https://www.halvorsen.blog ‘

Week Assignment

Software Testing — Test Planning

Hans-Petter Halvorsen

Week Assignment

1. Get an overview of Software Testing
in general

2. Create a Software Test Plan (STP)
3. Create a Virtual Test Environment

In software engineering, a freeze is a point in time in the development process after which the
rules for making changes to the source code or related resources become stricter, or the

period during which those rules are applied. https://en.wikipedia.org/wiki/Freeze (software engineering)

qum

[No Programming in Class these 2 weeks! — otherwise it is easy to lose focus on Testing]

https://en.wikipedia.org/wiki/Freeze_(software_engineering)

Test Planning and Execution

~

B

1 Create Software Test Plan (STP)
G
e

2 Create Virtual Test Environment
.

0

— Test Planning

3 [Test the Software according to STP }

Create Unit Tests in Visual Studio

— Test Execution
Next Week

https://www.halvorsen.blog ‘

Software Testing

Hans-Petter Halvorsen T T

Why Testing?

Make sure the software fulfills the Requirements from the
Customers (Software Requirements Specification, SRS)

Make sure the Software don't contain critical Bugs

Make sure the software can be installed at the customer.
The customer don't have Visual Studio!

Make sure the software are user-friendly an intuitive to use

Make sure the software is robust and has acceptable
performance (so it don't crash when more than 1 person
are using it, the database contain lots of data, etc.)

Client Different Platforms: Android,
i0S, Windows/Windows %
Different Phone, etc. =)
Browsers e TR
T - Presentation Tier] Mobile
- Desktop App App Presentation Tier
Presentation Tiers
|] || | | || | | |] || | |
"l’_______ _________________A_bi ______________ : Web Server LOCaI Internet
[Presentation Tier] [—] :
. eb Service ! ‘
 ASPNET Web Forms |y Network
_____________ e _
/ Micmsalt\‘/)
P sFeEsesssss 1 ----------- N API TS e
4 : . |
P 7/ ! Business Tier :
Clients 7/ _ av: | Logic Tier

_____________________ Testing is Complex!
i P e . A Systematic
Approach is needed!

=~
i Database
Database | |
Server ' Stored Procedures |
QL Server :\\ Tables Views | Data Tier

End-User User Guides Instal_lation .
Documentatian-- 2"~ _ ~~-Guides [Plannmg J
.-~ _Deployment R
System e R
& s \‘\ Plan

/ \

\ Project Planning

\

sm[. | The Software

Software Test Documentation }-
I
Software Test Plan (STP) v

Test | Deve|opment Requirements

\

Documentation 1 Analysis

\

Gantt Chart

:
° |
Documentatiops’ - ----- > Maintenance --_ AN Slbftwsalr)ePDeveIopment
|
1
I
|
|
I

L

Lifecycle T s

/

[Implementation }
.’ Software Requirements

Code \‘ (S D LC) /l/ Specifications

S

AN -“ Gantt Chart
System Documentation "~ _ -7

-

i N{ Design }’ SDD Software Design Documents
with ER Diagram, UML Diagrams, CAD Drawings

Project Management (Gantt Chart, etc.)

Start

w
£
=

Typical Software Documentation

(
l
I

1. Planning

2.Requierements

/Design
(The stakeholders, the
software team; architects,

—

2. Testin
(QA people

-

—

3. End-user

Documentation
(The people that
shall actually use

Finish the software)

Software
Development Plan

High-Level
Requirements and
Design Documents

Detailed
Requirements and
Desi o) e

Test Plans

Test Documentation

=

Documentation
Installation Guides

User Manuals

(SDP)
WHAT (SRS)
HOW (SDD)

ER Diagram (Database)
UML Diagrams (Code)
CAD Drawings, etc.

“How to Test/ {STP)™ ™ »
What to Test (STD)

Proof that you have tested and that theI
software works as expected J

Technical Stuff
(Super User/ IT dep.)

How to install it

How to use it
(End User)

Main purpose of Testing: Find Bugs!!

* Requirements Errors: 13%
* Design Errors: 24%

* Code Errors: 38%

* Documentation Errors: 13%
* Bad-fix Errors: 12%

Tsui, Frank et al. (2016). Essentials of Software Engineering. 4 ed. Jones & Bartlett Learning

1/ 90 :)h\l’ "'J (bpfstn::]& j (slhc .
I§2'S ‘_ln 1 m;.‘ \l'l‘l WA . TRAE RS 4

1Say

(You find the answer on the next slide)

The first Bug ever found

Jlart : v ol
15.": etra e T BANVEL NS \&2 Ay — .
1Say

r“!ﬁac Qgr_jw“" ‘.M‘J
[Theyfoundabug(actuallya moth) } M w ’

inside a computer in 1947 that made
the program not behaving as
expected. This was the “first” real bug.

https://en.wikipedia.org /wiki/Software bug

https://en.wikipedia.org/wiki/Software_bug

geek & poke

ONE DAY IN THE LIFE OF A CODER

PART &

OZ230 PM:- DEBUGGING

FINALLY!
WE'VE NEEDED
NEARLY 30
MINUTES TO GET
TO THAT POINT -
SO BE CAREFUL
AND PLEASE DO

NoT
PRESS ON ---

... "sTEP OVER"

What is Bugs

A software bug is an error, flaw,
failure, or fault in a computer program
or system that produces an incorrect
or unexpected result, or causes it to
behave in unintended ways

They found a bug (actually a moth)
inside a computer in 1947 that made
the program not behaving as
expected. This was the “first” real
bug.

Debugging: Find and Remove/Fix Bugs

http://geek-and-poke.com

http://geek-and-poke.com/

Why Find Bugs early?

Cost per defect/Bug

Software Development Life Cycle (SDLC) >

I'VE SEEN

..... ﬁ&” Software Testing

“If you don’t know how your
code works, it does not work

\\\\\

I'VE SWAPPED
TWO LJNES O}&

“50% of the Software
Development is about
Testing your Software”

http://geek-and-poke.com

\\\\\

: —vyou just don’t know it yet”
| e ‘ you] y

Testing

“Testing can only show the presence
of errors, not their absence”

Dijkstra, 1972

[Testing }

[Validation Testing] [Defect Testing }
Demonstrate to the Developer and the Find inputs or input sequences where
Customer that the Software meets its the behavior of the software is incorrect,
Requirements. undesirable, or does not conform to its

specifications.
Custom Software: These are caused by defects (bugs) in
There should be at least one test for every the software.

requirement in the SRS document.

Generic Software:

There should be tests for all of the system
features that will be included in the product
release.

I. Sommerville, Software Engineering, 10 ed.: Pearson, 2015.

Types of Testing

Usability
Testing [User Testing]
[Stress Testing]
Setup &
Non Functional Deployment Testing Functional
Testing Testing

[Load Testing]

GUI Testing

[Security Testing }

Requirements Performance
Testing Testing Usability Testing

Regression
Testing

“=ES T3E5

iy

388380
1

" 22

cerrert o b

rr"—!_'—!
e _J _J

Different Systems Needs leferent Testmg

a hare who

Microsoft Word

Mailings

insert References

Page tayout

J l = 53 Web Layout 5 =3 New window
| =
il] Outtine (Q = Arrange All
| Print |Full Screen Show/Hide Zoom Switch Macros
Layout Reading —=j Draft = = | Isent Windows ~ -~
Document Views Zoom Window Macros
| SRR 0 = 2 = > e N e g ¥ B e 0 ‘
L R SRS TR S, RSO SRR TR RN T

I Il’aqc:'lofz Words: 409 &5 €

pnce upon a time there was a hare who, boasting how he could run
faster than anyone else, was forever teasing tortoise for its
slowness. Then one day, the irate tortoise answered back: “Who do
you think you are? There’s no deny1ng you re swift, but even you can
be beaten!” The !

“Beaten in a race
the world that cz
you try?”

A —— - P pe A PR

) COMPRESSED AIR PRESSURE

2007-03-10 21:44:24
200 10 21:47:10 VESSEL 3

Tank level Low -1 -1
VDE open fail Active Z =

Videos about Testing

e Guru99.com:
http://www.guru99.com/software-testing.html
* NTNU:

http://video.adm.ntnu.no/pres/511de3f0ac5b5
* ... (search for Testing on YouTube)

http://www.guru99.com/software-testing.html
http://video.adm.ntnu.no/pres/511de3f0ac5b5

7 Principles of Testing

([Tube,

https://www.youtube.com/watch?v=rFaWOw8bIMM

5min
‘ Watch this Video

https://www.youtube.com/watch?v=rFaWOw8bIMM

7 Principles of Testing

1. Testing shows the presence of Bugs: Software Testing reduces the probability of
undiscovered defects remaining in the software but even if no defects are found, it

is not a proof of correctness.

2. Exhaustive Testing is impossible: Testing everything is impossible! Instead we need
optimal amount of testing based on the risk assessment of the application.

3. Early Testing: Testing should start as early as possible in the Software Development
Life Cycle (SDLC)

4. Defect Clustering: A small number of modules contain most of the defects/bugs
detected.

5. The Pesticide Paradox: If the same tests are repeated over and over again,
eventually the same test cases will no longer find new bugs

6. Testing is Context dependent: This means that the way you test a e-commerce site
will be different from the way you test a commercial off the shelf application

7. Absence of Error is a Fallacy: Finding and fixing defects does not help if the system
build is unusable and does not fulfill the users needs & requirements

http://www.guru99.com/software-testing-seven-principles.html
http://www.testingexcellence.com/seven-principles-of-software-testing

http://www.guru99.com/software-testing-seven-principles.html
http://www.testingexcellence.com/seven-principles-of-software-testing

SIMPLY EXPLAINED

geok & poke

.. AND I WAS
SO0000 SURE
THAT WE'D TESTED
EVERYTHING

SPACES IN FILENAMES
http://geek-and-poke.com

SIMPLY EXPLAINED

I'M QWERT,
I'M LIVING IN THE
ASDF STREET

(1] M

(/] AV

AND YOUR
PHONE NUMBER IS
1234567897

(] oAV
|

&)

-

Use Realistic Test Data!

geek & poke

YOUR NEW
DATEPICKER
WIDGET HAS

CRASHED
v/

TEST USER

THAT'S IMPOSSIBLE.
I'VE TESTED IT WITH
NEGATIVE NUMBERS,
SPECIAL
CHARACTERS,

NULL, ...
WHAT HAVE YOU PUT,
IN?

http://geek-and-poke.com/

Sporsmal ifm Testing

* Hvorfor ma vi teste programvare?

* Nar kan vi begynne a teste
programvare?

* Hva trengs for a utfgre testen?

 Hvordan kan / bgr vi teste?

 Hvem er best til a utfgre testen?

* Hvor er det behov for testing?

Test Categories
Black-box vs. White-box Testing

Black-box Testing: You need no
knowledge of how the system is created.

-

=
—
-
=
—
-—
-—
=
=
- ¥
—

Analyze Code & Identify Tests

Validate Output
Step 1

| —

Step 3

Input

Software

White-box Testing: You need to have
knowledge of how (Design and S
Implementation) the system is built

J8

Typically done by Developers, etc

Levels of Testing

Is the responsibility of the customer —in general. The goal
is to gain confidence in the system; especially in its non-
Acceptance Testing functional characteristics

ol

L

System Testing The behavior of the whole product (system) as

' defined by the scope of the project

Integration Testmgj\ Interface between components; interactions

with other systems (OS, HW, etc)

it Testi
Unit Testing +\vAny module, program, object separately

testable

Levels of Testing

___—» Unit Testing: Test each parts
(1» independently and isolated

—

Regression Testing: Test
that it still works after a
change in the code

Integration Testing: Make sure
that different pieces work
together. Test the Interfaces
between the different pieces.

Interaction with other systems /Q)
(Hardware, OS, etc.)

System Testing: Test the whole system

Levels of Testing

Requirements & Design

Start
Start/Developmen
Y “. Unit Tests are written by the Developers as part of the
[Unit Testing] " Programming. Each part is developed and Unit tested
| . separately (Every Class and Method in the code)
1y i """""""" ~ Regression testing is testing the system to check that
: Regression Testing . changes have not “broken” previously working code.
_____ Al:y Both Manually & Automatically (Re-run Unit Tests)
[Inteeration Testin] Integration testing means the system is put together
g J, g . and tested to make sure everything works together.
System/Validation System .testlng is typlc.ally_BIack—b.ox Tests th.at vallda'Fe
Testing ' the entire system against its requirements, i.e Checking
________________________________ that a software system meets the specifications
v i The Customer needs to test and approve the software

Finish [Acceptance Jesting] before he can take it into use. FAT/SAT.

Test Categories:

Testing Overview
Test Methods:

Test Levels:

Black-box Testing

White-box Testing

[Unit Testing]

Regression Testing

[Integration Testing]

System Testing

[Acceptance Testing]

[GUI Testing }

[Stress Testing]

[Load Testing]

[Security Testing } [

Usability
Testing

|

|

Performance

Testing } (

Functional

|

Non Functional
Testing

N\

Testing

|

J

etc.

80 — 20 Rule

It takes 20% of the time to finish 80% of your application -
> Prototype (80% finished) (The “fun” part, we stop here)

It takes 80% of the time to finish the last 20% (minor
adjustments, stability and performance improvements,
bug fixing, etc.) (The “boring” part)

80% of the users only use 20% of the features

80% of performance improvements are found by
optimizing 20% of the code

80% of the bugs are found in 20% of the code

http://swreflections.blogspot.no/2013/11/applying-8020-rule-in-software.html

http://swreflections.blogspot.no/2013/11/applying-8020-rule-in-software.html

https://www.halvorsen.blog ‘

Software Test Plan

Hans-Petter Halvorsen T T

Software Test Plan (STP)

* Create a Software Test Plan (STP)

 The content in the STP may differ depending
on the Project (what kind of software you are
creating, the size, etc.), see examples on the
next slides

* Upload the STP to Teams/Azure DevOps &
your Web Site

See Next Slides for more details...

Create Software Test Plan (STP)

Create a Software Test Plan (STP) document

g

Team:

Introduction
d Test Software (Azure DevOps, ...)

[J Test Resources

g

OO

d Test Personnel and Responsibilities. Test Manager

d Test Environment and Test Hardware

Overview of different Test Types

1 Validation Testing and Defect Testing

O Unit Testing, Regression Testing, Integration Testing, System Testing,
Acceptance Testing

Test Strategies

d What to test

J How to test

d When to test. Test Schedule

Test Cases. Can, e.g., be Excel sheets

Test Documentation - How shall tests be documented?

Test Planning

To maximize the effectiveness of resources spent
on testing, a systematic approach is required

Testing should be well planned and organized

Testing should be documented. Typically, the

Customer requires that the Testing of the Software
is well documented

A Software Test Plan (STP) should be created

Software Test Plan — Key Factors

Software Test Plan Key Factors:

-~

L Functional Testing
Requirements Techniques
0 \ '
Risk Factors Testability

Software Engineering (Saikat Dutt, et al.)

1.

Identify Key Functionalities: The important
functionalities that the product should have to
ensure its success.

Testing Techniques and Tools: The different
testing techniques and tools that could be
leveraged for testing the various product
functionalities.

Risk Factors Approach: The various risk factors
which need to be considered and their impact
to the product.

Testability of Features: The testability of the
product and areas of the product which may not
be testable.

What is a Software Test Plan (STP)?

A Document that answers the following:

e Testing should be based on Requirements & Design Documents
* What shall we test?

* How shall we test?

* Hardware/Software Requirements

* Where shall we test?

* Who shall test?

* How often shall we test (Test Schedule)?

e How shall tests be documented?

= |tis not enough simply to run tests; the results of the tests must be systematically recorded. It must be
possible to audit the testing process to check that it has been carried out correctly

= System tests: This section, which may be completely separate from the test plan, defines
the test cases that should be applied to the system. These tests are derived from the
system requirements specification. http://www.softwareengineering-9.com/Web/Testing/Planning.html

http://www.softwareengineering-9.com/Web/Testing/Planning.html

Test Cases Example

If Test Cases Fails, report Bugs in DevOps
Tester: , Date:

m Failed | Expected Behavior | Description/Comments

The Login Procedure works

User Data Saved in the
Database

Etc.

The Foundation for the Test Cases are the Software
Requirements (found in the SRS document)

The Testers fill in these Lists electronically. Should be included in Software Test Documentation

Test Cases Examp

Examples of Fields in a Test case document:

le

» Test Case Id—A unique sequential number to
identify each test case.

 Short Description—A brief description of the
functionality tested in a few words.
* Description—A more detailed description of the

functionality in a few sentences.
* Pre-requisites—The data that would be required
to set up or the environment should be available.
» Test Steps—A set of logical steps to test a

particular functionality of the application. The
test steps could be written for positive as well as
negative tests.

» Test Data—The data that are required to test the 2

particular flow.

* Status—The pass/fail of the test case execution.
* Remarks—Any comments or information which

the tester would like to share for future
reference.

Software Engineering (Saikat Dutt, et al.)

SRS Ref | Test Case Test Test Condition Expected Results Actual | Status | Remarks
No. Case Result
ID
1-TC-1 | Anonymous user User is able to access the
tries to click on login page containing
Anonymous links provided on text and links
1 [11,1.2 |User Login Page
Anonymous user Access to product is
tries to login with | granted only with an
Anonymous some username, “Authorizied Client”
11,1.2 | Users 1-TC-2 | password username and password
Client user tries
to click on links User is able to access the
provided on Login | login page containing
11,1.2 |ClientUser |1-TC-3 [Page text and links
Upon enterning an
approved username and
password the user wil
Client user be granted access to the
enters Approved product. The user will be
11,1.2, username and redirected to home page
13 Client User | 1-TC-4 | Password screen.
Clent userlogs on | Clicking on Homepage
to the website and | link wil redirect
click on the Home | user loged on client
11,1.2 |ClientUser |1-TC-5 |[page Link. Homepage
After login into the
application, from
any screen, user
clicks on Home User will be redirected to
11,1.2 | ClientUser [1-TC-6 [From global header | Client Homepage

These things need to be specified in the STP

/Y
: | o -
r m r |; 4 - | RO04YTO
44 Test

Test specs and
Bequirement document thuman resource> Test environment
T f We start creating Test
We will create a Virtual Test Environment on Friday
Software Test Plan (STP) Envionment using VMware Player ~ and start Testing next

week, Report Bugs in
We start creating a STP and Virtual Test Environments this week Azure DevOps, etc.

How to make a Test Plan

2. Design Test | 3. Define Test
Strategy — Objectives

b. Plan Test y - - 4. Define Test
ernvironment f— p— criteria

T. achnedvig 4 - . Determing T1est
£stiimaction ! Deliveraples

http://www.guru99.com/what-everybody-ought-to-know-about-test-planing.html

http://www.guru99.com/what-everybody-ought-to-know-about-test-planing.html

Who will use the website?

What is it used for?

How will it work?

What are software/hardware the product uses?

2. Desgn Test

strateqy

What kinds of Tests shall be done (Unit
Testing, API Testing, Integration Testing,
System Testing, Installation Testing, ...)?

2. Define Test

Ob)ectives

The objective of the testing is finding as ,___/
many software defects as possible; ensure
that the software under test is bug free
before release.

k. Plan Tesr
environment

What kind of Test Environment/Where is the Test
Environment?, How often shall we update the Test
Environment?

We will create a Virtual Test Environment using VMware
Workstation Player

When shall we Test?
How many hours of Testing?

5. Respurce
Pﬂﬂﬂiﬂg

Who shall Test?

Test Roles? Test Manager, Testers, ...

QA (Quality Assurance)

4 Define Test

Ccriteria

When are we finished Testing?

9. Determine Test

Deliveraoles

Test Logs, Test Results/Reports

M

L

Appendix D in Essentials of Software Engineering

Test Plan Example

Goals and Exit Criteria (Quality, Robustness, Schedule, Performance Goals
of the Product, ...)

Items to be Tested/Inspected (Executables such as modules and

components, Nonexecutables such as Requirments and Design
specifications, ...)

Test Process/Methodologies (Unit, Functional, Acceptance, Regression
Tests, Black-box, White-box, Test metrics, Bug report process, ...)

Resources (People, Tools, Test Environment, ...)

Schedule (Test—case development, Test execution, Problem reporting and
fixing, ...)

Risks (...
Major Test Scenarios and Test Cases (...)

Essentials of Software Engineering, Frank Tsui; Orlando Karam; Barbara Bernal, 3 ed., Jones & Bartlett Learning

Reference: Software Testing Tutorial, tutorialspoint.com

Te St P | a N Exa m p I e #2 See PDF document on Course schedule

A Test Plan outlines the strategy that will be used to test an application, the
resources that will be used, the test environment in which testing will be
performed, the limitations of the testing and the schedule of testing activities.
Typically the Quality Assurance Team Lead will be responsible for writing a Test
Plan.

A Test Plan will include the following:

Introduction to the Test Plan document

Assumptions when testing the application

List of test cases included in Testing the application

List of features to be tested

What sort of Approach to use when testing the software

List of Deliverables that need to be tested

The resources allocated for testing the application

Any Risks involved during the testing process

A Schedule of tasks and milestones as testing is started

O O OO0 OO O OO0

Example #3

How to Create a Test Plan OUIV™

http://www.guru99.com/what-everybody-ought-to-know-about-test-planing.html

Test Plan Template:
http://download.guru99.com/random download/download file.php?file=guru99/TestPlan.doc

Test Plan Example:
http://download.guru99.com/random download/download file.php?file=guru99/Test Plan Guru99.pdf

http://www.guru99.com/what-everybody-ought-to-know-about-test-planing.html

s

E
-

xample #4

7

8

CHAPTER 25 _INTROJJUCTIDN TO SOFTWARE TESTING
% MT ¢ lcklbox BinclloRlity. P@br to the Jllve oroONofularizat :n ‘xcn .da. 'ns -
G ! : ; ar R)
l-tiollal § ded Bsentc . Bvel functidihal ur prosTgming uMts can b,
As will be seen in Chapter 26, on unit testing, e

h
separately tested but only when cleanly designed 00 (an"g
and package testing

includes method, class

25.6 DOCUMENTING TESTS
It requires significant time to decide what to test, how to test, when to do so v‘uml v what data. In additioy,
-d to determine what defects they uncovered. We therefore treat cach test as an’
- reused or modified wi
“re

test results must be analy i
item of value. Test procedures, test data, and test records are maintained; tests arc
2

ars 2
possible. Examples of test documentation can be found in Chapters 26 and

25.7 TEST PLANNING
the effectiveness of resources spent on testing, a systematic approach is required and a plan

as possible

I'o maximiz
Recall that the goal is to detect as many errors as possible at as serious a level

is devised
T'ypical planning steps are shown in Figure 25.8 and claborated in the rest of

with the resources available

this section

25.7.1 Organize “"Unit’”’ vs. Non-Unit Tests

I'he limits of what constitutes a “unit” have to be defined by the development team. For example, do they
include the testing of packages, or is this to be considered another type of testing?

1. Define “units” vs. non-units for testing
2. Determine what types of testing will be performed
3. Determine extent
* Do not just “test until time expires”
 Prioritize, so that important tests are definitely performed
4. Document
= Individual’s personal document set included?
* How/when to incorporate all types of testing?
* How/when to incorporate in formal documents?
* How/when to use tools/test utilities?
5. Determine input sources
6. Decide who will test
= Individual engincer responsible for some (units)?
e How/when inspected by QA»
* How/when designed and performed by third parties?
Estimate resources
* Use historical data if available
Identify metrics to be collected
* Define, gather, use
* For example, time, defect count, type, and source

Figure 25.8 A plan for testing

TEST PLANNING 627

afnnlhcr defect in 5 (102
= 5
bounds test examples

as bee;
: leting a seri f €eNn completeq
« After comp ©s of targeted co Plete
Verage (e
g, b

-n testing runs out of st e
. Wher ting 1ts scheduled time nch coverage for unit testing
. ————
Figure 25.9 Stopping criteria for testing

For object-oriented development pr
oOjects, a com
mon sequenc

each class, then the classes of cach package, and pe
. - ¥ c ¥
framework, we would test the classes in cach framn " P¢ Pac

30? 1002) minutes of testing
show no defect

€ of unit testing is to test the methods of
kage as a whole If we were building a

: Sethe . work package
packages, because the latter depend on the former. Once fe oyt 2" then move on to the application
- “units

they must be organized and saved in a systematicimumny and non-unit tests have been identified
3 anner

25.7.2 Determine the Extent of Testing

S - impossible to test for eve .
:.,;;V.:'::(|'(n il ;(l’)a("v‘:‘:‘]Yg[:;::ll‘zl;l:‘l::-‘il:::;\lI):L;:‘lel of testing should be considered and defined
e ; withdrawals, deposits, and queries, unit testing

could specify that every method should be tested with an equal amount of legal, boundary, and illegal data «
Ehapsyduc o' their sensiodi/ TR IR RIS et B B TR B B ks S o
fisnmethods; and <o o Tesb it Bre e 1R oL BTG T] bt Dbt el o s
judged most likely to fail. Stopping criteria are established in advance; these are concrete gnnduunn‘s upon which
testing stops. Examples are listed in Figure 259 ;

25.7.3 Decide How Tests Will Be Documented

Test documentation consists of test procedures, input data, the code that executes the test, output data

known issues that cannot be attended to yet, and efficiency data. Test drivers and utilities are used to execute
unit tests, and these are documented for future use. JUnit is an example of a unit test utility (described in more
detail in Chapter 26). JUnit-like and various professional test utilities help deve lopers to retain test
documentation. JUnit classes, in particular, tend to be maintained along with the application

25.7.4 Decide How and Where to Get Test Input

Applications are developed to solve problems in a specific area, and there is often a set of test data special to
the application. Examples are as follows:

* Standard test stock market data for a brokerage application

* Standard test chemical reactions for a chemical engineering application

* Standard FDA procedures for the pharmaceutical industry
* Standard test input for a compiler

* Output from previous versions of the application

e of such domain-specific test input must be planned
S

The procurement process and u

dern Approaches, 2 ed.: Wiley, 2011. (Ch. 25)

Test Plan Example

Example #5

* 1. Sample Test Plan Structure: Introduction
e 1.1 Background
* 1.2 References
e 1.3 Development Methodology
* 1.4 Change Control Procedure
* 1.5 Test Assumptions
* 2. Scope
* 2.1 Technical Overview of the Application
e 2.2 Technical components or architecture diagram
2.3 Business Overview of the application
2.4 Business or Data Model Diagram
2.5 External Interfaces
2.6 Testability
2.7 Out of Scope

Software Engineering (Saikat Dutt, et al.)

* 3. Test Strategy
* 3.1 Features to be tested
* 3.2 Types of testing
* 3.3 Testing Approach
* 4. Release
* 4.1 Activity Guidelines
4.2 Defect Tracker Setup
4.3 Test case pass/fail criteria
4.4 Test suspension criteria
4.5 Test resumption requirements
* 4.6 UAT Release criteria
* 5. Critical Dates

Project Management (Gantt Chart, etc.)

Typical Software Documentation

Start Software
1. Planning '{ Development Plan (SDP)
2.Requierements Req.uwements and | How (SDD)
/Design — Design Do_cuments _
(The stakeholders, the I_)etalled EFFVI[I)_'aDgram (Da(t(&:] ng?)
software team; architects, ReqUIrements and CAD Dljg\%r;?lrgss et(? €
QP UXdesigners,developers) ‘. |..Dasi o o -
£l = [=DesignDocuments= 1 7 7, Tocf/ 519)™ ™ >
| 2. Testin Test Plans What to Test (STD) '
l (QA people _—) Proof that you have tested and that th§
I - Test Documentation software works as expected I
Coosoesss- T3 ctem T T T Téchnical’stoff— — — =
>ystem) (Super User/ IT dep.)
3. End-user Documentation

Documentation

(The people that

shall actually use
Finish the software)

Installation Guides

User Manuals

How to install it

How to use it
(End User)

Test Documentation

Software Test Plan (STP)

. 5 Document |
[Planning Tests]—>[Perfor_m Tests]——{ Test Results J

T Software Test
e o’ Documentation
=== F e e e e == ~ (STD)

Software Design Document (SDD) : - Functional & Non-Functional Requirements
Software Requirements Specifications (SRS) 1 - User & System Requirements

These documents will be the foundation for all Testing

https://www.halvorsen.blog ‘

Test Environment

Hans-Petter Halvorsen T T

Test Environment

Note! Make sure you have enough
free space on your harddrive!

Prepare a Virtual Test Environment using
VMware Workstation Player (virtual Machine, VM)

nsta
nsta
nsta

Windows (from Microsoft Imagine)
SQL Server
your Software on the Virtual Machine

Make It ready for Testing [Note! Everyone on the Team}

should do this Exercise

See Next Slides for more details...

Create Virtual Test Environment

You need +20Gb free]

4 Install VMware Workstation Player [spaceonyourharddnve

[Install Windows 10 (from .iso file, ~3Gb)

[Install VMware Tools in the VM et sudentsbmiing s o il ecte apie |

 Install SQL Server in the VM

(d Activate Web Server — Internet Information Services (1IS) and ASP.NET

O Backup (Make a copy of the Folder) the Virtual Machine (VM). In that way
______ you have a clean Test Environment you can use several times. |

 Install your Software in the VM and make it ready for Testing

 Create/Install your Database from a SQL Script (You should have one SQL
Script that installs everything, such as Tables, Views, Stored Procedures, etc.)

O Install Desktop App (if any), i.e., copy .exe file, etc.

O Install Web App, copy files (web files, dil and other necessary files) and
deploy to Web Server (IIS) Note! Visual Studio shall

3 Make a Copy of your VM (Memory Stick/Hard Drive) an’t e mtheTeSt}

Environment

Name:

Why Test Environment?

“It works on my PC” says the Developer
Clean Environment

On the Developers PCs we have all kind of Software installed that
the Customer don't have, e.g., Development Tools like Visual
Studio, etc.

We need to test on different Platforms and Operating Systems
Customers may use different Web Browsers

Deployment: Test of Installation packages

Make the software available for Testers

etc.

“It works on my Computer”
SIMPLY EXPLAINED

DATA CENTER
DATA CENTER
EAST COAST EMEA

DATA CENTER
WEST COAST

DATA CENTER
ASIA PACIFIC

geek & poke

JIM’S MACHINE

you
DIDN’T FIND
THAT BLG, DID
you=

"ON MY MACHINE IT WORKS"”

Make sure to test your software on

other Computers and Environments

than your Development Computer!

e Everything works on the Developer
Computer

 The Customers Database is not the
same as yours

* The Customer may not use the
same OS

* The Customer may not use the
same Web Browser

* The Customer do not have Visual
Studio, SQL Server, etc. on their
Personal Computer

* Etc.

=> Test Environment is needed!

until finished

Developers Developers & Testers Customers

[Development } >[Testing } >[Production]
Typically the Developers Personal A Clean PC/Server (or a network The Customers enviror_lment
Computer with Database, Web with PCs and Servers) where you where you install the final
Server and Programming Software install and test your Software. software (Servers and

Today we typically set-up a Virtual Clients)
ironment

Development
Environment

Production

Test Environment Environment

Programming environments such as Visual
Studio, etc. should not be installed in this
environment. You need to create .exe files
etc. in order to make your software run.

Guests

Host —

Virtualization

Windows, Linux, ...

o) (o)

Virtualization
Software

-
{ Operation System 1

Hardware
(Computer)

VM = Virtual Machines

Windows, Linux, ...
o

{ Hypervisor }

A Hypervisor can
run directly on the
computer without
a Host OS

Virtualization Software

A lot of Virtualization Software exists. Here are some examples:
 VMware Workstation

 VMware Workstation Player (Free of charge and simple to
use)

 VMware vSphere and vSphere HyperVisor
 VMware Fusion (Mac)

e Parallels Desktop (Mac)

* Microsoft Hyper-V (part of Windows)

* VirtualBox

¢ etc.

VMware Workstation Player

VMware Workstation Player is for personal use on

your own PC. VMware Player is free of charge for
personal non commercial use.

aaaaaaaaaaaa (Non-commercial use only) - o IEN
=
Welcome to VMware Player

3] Windows 8 —

> = Create a New Virtual Machine

} i + Ba machine, which v

- dded to th of your libr. rar v,
}
Open a Vir Ma

VMware is a company that has
been specializing within
virtualization software.
http://www.vmware.com

penanevstng rtual machine, which will then be
added to the t You'lbr ry.

de to VMware Workstation

=

L

M. Upgra i
Q e advanced features such as snapshots,

eloper tool integration, and more.

http://www.vmware.com

Test Environment - Summary

* Itis important to test your software outside the
Development Environment

* To make the software available for test personnel
(nonprogrammers), the company leaders, customers,
those who are creating user documentation, sales
department, etc. None of these have programming experience
or have Visual Studio, etc. installed

* Itisimportant that the Customers, Testers, etc. have
access to and can test the software in good time before
release and deployment to Production Environment

GCOOD CODE 1S---

DON'T
ToOoUCHLLL

geck & poke

http://geek-and-poke.com

--= LIKE A MING VASE-=
BEAUTIFUL BUT FRAZILE

“It your code works, but you don’t know why

— Then it does not work, you just don’t know
it yet”

http://geek-and-poke.com/

Customer Perspective

* Remember — It is your Customers that are
going to use your Software (and pay for it)!

* The Customer needs to be involved in the
Requirements, User Experience and Testing
of the Software!

 |If the Customer cannot use the software,
then the software becomes worthless

Hans-Petter Halvorsen

University of South-Eastern Norway

WWW.uUusn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

