
Hans-Petter Halvorsen

https://www.halvorsen.blog

Week Assignment
Software Testing – Test Planning

Week Assignment

1. Get an overview of Software Testing
in general

2. Create a Software Test Plan (STP)
3. Create a Virtual Test Environment

https://en.wikipedia.org/wiki/Freeze_(software_engineering)

In software engineering, a freeze is a point in time in the development process after which the
rules for making changes to the source code or related resources become stricter, or the
period during which those rules are applied.

No Programming in Class these 2 weeks! – otherwise it is easy to lose focus on Testing

https://en.wikipedia.org/wiki/Freeze_(software_engineering)

Create Software Test Plan (STP)

Create Virtual Test Environment

Test the Software according to STP

Create Unit Tests in Visual Studio

Test Planning

Test Execution

1

2

3

4

Test Planning and Execution

Next Week

Hans-Petter Halvorsen

https://www.halvorsen.blog

Software Testing

Table of Contents

Why Testing?
• Make sure the software fulfills the Requirements from the

Customers (Software Requirements Specification, SRS)
• Make sure the Software don't contain critical Bugs
• Make sure the software can be installed at the customer.

The customer don't have Visual Studio!
• Make sure the software are user-friendly an intuitive to use
• Make sure the software is robust and has acceptable

performance (so it don't crash when more than 1 person
are using it, the database contain lots of data, etc.)

Database

Presentation Tier

e.g., ADO, ADO.NET

Logic Tier

Web Service

Business Tier

Data Access Tier

Data Tier
Stored Procedures

ViewsTables

Web Server

Database
Server

Presentation Tier

Client

ASP.NET Web Forms

Web App
Presentation Tier

Different
Browsers

Cl
ie

nt

ClientWinForms

Testing is Complex!
A Systematic

Approach is needed!

Firewall

Clients

Desktop App
Mobile

App

Internet
Local

Network

Different Platforms: Android,
iOS, Windows/Windows

Phone, etc.

API

API

API

API

Presentation Tiers

Web Browser

Requirements
Analysis

Design

Implementation

Testing

Maintenance

Planning
Deployment

SRS

SDD

STD

Code

Installation
Guides

User Guides

Gantt Chart

with ER Diagram, UML Diagrams, CAD Drawings

Test
Documentation

Software Requirements
Specifications

Software Design Documents
System Documentation

Software Test Plan (STP)

Project Planning

End-User
Documentation

System
Documentation

Software Test Documentation

SDP
Software Development

Plan

Gantt Chart

The Software
Development

Lifecycle
(SDLC)

Typical Software Documentation

High-Level
Requirements and
Design Documents

User Manuals

System
Documentation

Installation Guides

Test Plans

Test Documentation

Detailed
Requirements and
Design Documents

ER Diagram (Database)
UML Diagrams (Code)

Ti
m

e
Start

Finish

How to Test/
What to Test

CAD Drawings, etc.

1. Planning

2. Testing

3. End-user
Documentation
(The people that
shall actually use
the software)

Technical Stuff

How to use it

How to install it

Proof that you have tested and that the
software works as expected

(The stakeholders, the
software team; architects,
UX designers, developers)

(QA people)

(Super User/ IT dep.)

WHAT
HOW

(End User)

Pr
oj

ec
t M

an
ag

em
en

t (
Ga

nt
t C

ha
rt

, e
tc

.)

(SRS)
(SDD)

(STP)
(STD)

Software
Development Plan

(SDP)

2.Requierements
/Design

Main purpose of Testing: Find Bugs!!

• Requirements Errors: 13%
• Design Errors: 24%
• Code Errors: 38%
• Documentation Errors: 13%
• Bad-fix Errors: 12%

Tsui, Frank et al. (2016). Essentials of Software Engineering. 4 ed. Jones & Bartlett Learning

What is this?

(You find the answer on the next slide)

The first Bug ever found

https://en.wikipedia.org/wiki/Software_bug

They found a bug (actually a moth)
inside a computer in 1947 that made
the program not behaving as
expected. This was the “first” real bug.

https://en.wikipedia.org/wiki/Software_bug

What is Bugs
• A software bug is an error, flaw,

failure, or fault in a computer program
or system that produces an incorrect
or unexpected result, or causes it to
behave in unintended ways

• They found a bug (actually a moth)
inside a computer in 1947 that made
the program not behaving as
expected. This was the “first” real
bug.

• Debugging: Find and Remove/Fix Bugs
http://geek-and-poke.com

http://geek-and-poke.com/

Why Find Bugs early?

Requirements

Design

Implementation

Testin
g

Deployment

Software Development Life Cycle (SDLC)

Cost per defect/Bug

“If you don’t know how your
code works, it does not work
– you just don’t know it yet”

Software Testing

“50% of the Software
Development is about
Testing your Software”

http://geek-and-poke.com

Testing
“Testing can only show the presence
of errors, not their absence”

Dijkstra, 1972

Validation Testing Defect Testing

Testing

Demonstrate to the Developer and the
Customer that the Software meets its
Requirements.

I. Sommerville, Software Engineering, 10 ed.: Pearson, 2015.

Custom Software:
There should be at least one test for every
requirement in the SRS document.
Generic Software:
There should be tests for all of the system
features that will be included in the product
release.

Find inputs or input sequences where
the behavior of the software is incorrect,
undesirable, or does not conform to its
specifications.
These are caused by defects (bugs) in
the software.

Types of Testing

Stress Testing

Usability
Testing

Performance
Testing

User Testing

Regression
Testing

Setup &
Deployment Testing...

...

...
Requirements

Testing

GUI Testing

Functional
Testing

Non Functional
Testing ...

...

...

Load Testing

Usability Testing

Security Testing

Different Systems Needs Different Testing

Why?

1 2

3 4

Videos about Testing

• Guru99.com:
http://www.guru99.com/software-testing.html

• NTNU:
http://video.adm.ntnu.no/pres/511de3f0ac5b5

• ... (search for Testing on YouTube)

http://www.guru99.com/software-testing.html
http://video.adm.ntnu.no/pres/511de3f0ac5b5

7 Principles of Testing

https://www.youtube.com/watch?v=rFaWOw8bIMM
⏰ 5min

Watch this Video

https://www.youtube.com/watch?v=rFaWOw8bIMM

7 Principles of Testing
1. Testing shows the presence of Bugs: Software Testing reduces the probability of

undiscovered defects remaining in the software but even if no defects are found, it
is not a proof of correctness.

2. Exhaustive Testing is impossible: Testing everything is impossible! Instead we need
optimal amount of testing based on the risk assessment of the application.

3. Early Testing: Testing should start as early as possible in the Software Development
Life Cycle (SDLC)

4. Defect Clustering: A small number of modules contain most of the defects/bugs
detected.

5. The Pesticide Paradox: If the same tests are repeated over and over again,
eventually the same test cases will no longer find new bugs

6. Testing is Context dependent: This means that the way you test a e-commerce site
will be different from the way you test a commercial off the shelf application

7. Absence of Error is a Fallacy: Finding and fixing defects does not help if the system
build is unusable and does not fulfill the users needs & requirements

http://www.guru99.com/software-testing-seven-principles.html
http://www.testingexcellence.com/seven-principles-of-software-testing

http://www.guru99.com/software-testing-seven-principles.html
http://www.testingexcellence.com/seven-principles-of-software-testing

Use Realistic Test Data!

http://geek-and-poke.com

http://geek-and-poke.com/

Spørsmål ifm Testing

• Hvorfor må vi teste programvare?
• Når kan vi begynne å teste

programvare?
• Hva trengs for å utføre testen?
• Hvordan kan / bør vi teste?
• Hvem er best til å utføre testen?
• Hvor er det behov for testing?

Test Categories
Black-box vs. White-box Testing

White-box Testing: You need to have
knowledge of how (Design and
Implementation) the system is built

Black-box Testing: You need no
knowledge of how the system is created.

Grey-box Testing

Typically done by Developers, etc

Levels of Testing

Unit Testing

Integration Testing

System Testing

Acceptance Testing

Any module, program, object separately
testable

Interface between components; interactions
with other systems (OS, HW, etc)

The behavior of the whole product (system) as
defined by the scope of the project

Is the responsibility of the customer – in general. The goal
is to gain confidence in the system; especially in its non-
functional characteristics

Levels of Testing
Unit Testing: Test each parts
independently and isolated

Integration Testing: Make sure
that different pieces work
together. Test the Interfaces
between the different pieces.
Interaction with other systems
(Hardware, OS, etc.)

System Testing: Test the whole system

Regression Testing: Test
that it still works after a
change in the code

Levels of Testing

Unit Testing

Regression Testing

Integration Testing

System/Validation
Testing

Acceptance Testing

Start

Finish

Requirements & Design
Start Development

Unit Tests are written by the Developers as part of the
Programming. Each part is developed and Unit tested
separately (Every Class and Method in the code)

The Customer needs to test and approve the software
before he can take it into use. FAT/SAT.

System testing is typically Black-box Tests that validate
the entire system against its requirements, i.e Checking
that a software system meets the specifications

Integration testing means the system is put together
and tested to make sure everything works together.

Regression testing is testing the system to check that
changes have not “broken” previously working code.
Both Manually & Automatically (Re-run Unit Tests)

Testing Overview
Test Categories: Test Levels: Test Methods:

Unit Testing

Regression Testing

Integration Testing

System Testing

Acceptance Testing

Black-box Testing

White-box Testing

Stress Testing

Performance
Testing

GUI Testing

Functional
Testing

Non Functional
Testing

Load Testing

Usability
Testing

Security Testing

etc.

80 – 20 Rule
• It takes 20% of the time to finish 80% of your application -

> Prototype (80% finished) (The “fun” part, we stop here)
• It takes 80% of the time to finish the last 20% (minor

adjustments, stability and performance improvements,
bug fixing, etc.) (The “boring” part)

• 80% of the users only use 20% of the features
• 80% of performance improvements are found by

optimizing 20% of the code
• 80% of the bugs are found in 20% of the code

http://swreflections.blogspot.no/2013/11/applying-8020-rule-in-software.html

http://swreflections.blogspot.no/2013/11/applying-8020-rule-in-software.html

Hans-Petter Halvorsen

https://www.halvorsen.blog

Software Test Plan

Table of Contents

See Next Slides for more details...

Software Test Plan (STP)
• Create a Software Test Plan (STP)
• The content in the STP may differ depending

on the Project (what kind of software you are
creating, the size, etc.), see examples on the
next slides

• Upload the STP to Teams/Azure DevOps &
your Web Site

Create a Software Test Plan (STP) document
q Introduction

q Test Software (Azure DevOps, ...)
q Test Resources

q Test Personnel and Responsibilities. Test Manager
q Test Environment and Test Hardware

q Overview of different Test Types
q Validation Testing and Defect Testing
q Unit Testing, Regression Testing, Integration Testing, System Testing,

Acceptance Testing
q Test Strategies

q What to test
q How to test
q When to test. Test Schedule

q Test Cases. Can, e.g., be Excel sheets
q Test Documentation - How shall tests be documented?

Create Software Test Plan (STP)
Team:_______________

Test Planning
• To maximize the effectiveness of resources spent

on testing, a systematic approach is required
• Testing should be well planned and organized
• Testing should be documented. Typically, the

Customer requires that the Testing of the Software
is well documented

• A Software Test Plan (STP) should be created

Software Test Plan – Key Factors

Software Engineering (Saikat Dutt, et al.)

Software Test Plan Key Factors:
1. Identify Key Functionalities: The important

functionalities that the product should have to
ensure its success.

2. Testing Techniques and Tools: The different
testing techniques and tools that could be
leveraged for testing the various product
functionalities.

3. Risk Factors Approach: The various risk factors
which need to be considered and their impact
to the product.

4. Testability of Features: The testability of the
product and areas of the product which may not
be testable.

1. 2.

3. 4.

What is a Software Test Plan (STP)?
A Document that answers the following:
• Testing should be based on Requirements & Design Documents
• What shall we test?
• How shall we test?
• Hardware/Software Requirements
• Where shall we test?
• Who shall test?
• How often shall we test (Test Schedule)?
• How shall tests be documented?

§ It is not enough simply to run tests; the results of the tests must be systematically recorded. It must be
possible to audit the testing process to check that it has been carried out correctly

§ System tests: This section, which may be completely separate from the test plan, defines
the test cases that should be applied to the system. These tests are derived from the
system requirements specification. http://www.softwareengineering-9.com/Web/Testing/Planning.html

http://www.softwareengineering-9.com/Web/Testing/Planning.html

Test Cases Example
Tester: _______________________ , Date: ________

Test Case OK Failed Expected Behavior Description/Comments

The Login Procedure works ...

User Data Saved in the
Database

...

Etc. ...

The Testers fill in these Lists electronically. Should be included in Software Test Documentation

If Test Cases Fails, report Bugs in DevOps

The Foundation for the Test Cases are the Software
Requirements (found in the SRS document)

Test Cases Example

Software Engineering (Saikat Dutt, et al.)

Examples of Fields in a Test case document:
• Test Case Id—A unique sequential number to

identify each test case.
• Short Description—A brief description of the

functionality tested in a few words.
• Description—A more detailed description of the

functionality in a few sentences.
• Pre-requisites—The data that would be required

to set up or the environment should be available.
• Test Steps—A set of logical steps to test a

particular functionality of the application. The
test steps could be written for positive as well as
negative tests.

• Test Data—The data that are required to test the
particular flow.

• Status—The pass/fail of the test case execution.
• Remarks—Any comments or information which

the tester would like to share for future
reference.

Software Test Plan (STP)
We will create a Virtual Test
Envionment using VMware Player

These things need to be specified in the STP

We start creating a STP and Virtual Test Environments this week

We start creating Test
Environment on Friday
and start Testing next
week, Report Bugs in
Azure DevOps, etc.

How to make a Test Plan

http://www.guru99.com/what-everybody-ought-to-know-about-test-planing.html

http://www.guru99.com/what-everybody-ought-to-know-about-test-planing.html

What kind of Test Environment/Where is the Test
Environment?, How often shall we update the Test
Environment?
We will create a Virtual Test Environment using VMware
Workstation Player

When shall we Test?
How many hours of Testing?

When are we finished Testing?
...

What kinds of Tests shall be done (Unit
Testing, API Testing, Integration Testing,
System Testing, Installation Testing, ...)?

Who will use the website?
What is it used for?
How will it work?
What are software/hardware the product uses?

Who shall Test?
Test Roles? Test Manager, Testers, ...
QA (Quality Assurance)

Test Logs, Test Results/Reports

The objective of the testing is finding as
many software defects as possible; ensure
that the software under test is bug free
before release.

Test Plan Example
A. Goals and Exit Criteria (Quality, Robustness, Schedule, Performance Goals

of the Product, ...)
B. Items to be Tested/Inspected (Executables such as modules and

components, Nonexecutables such as Requirments and Design
specifications, ...)

C. Test Process/Methodologies (Unit, Functional, Acceptance, Regression
Tests, Black-box, White-box, Test metrics, Bug report process, ...)

D. Resources (People, Tools, Test Environment, ...)
E. Schedule (Test-case development, Test execution, Problem reporting and

fixing, ...)
F. Risks (...)
G. Major Test Scenarios and Test Cases (...)

Essentials of Software Engineering, Frank Tsui; Orlando Karam; Barbara Bernal, 3 ed., Jones & Bartlett Learning

Appendix D in Essentials of Software Engineering

Test Plan Example #2
• A Test Plan outlines the strategy that will be used to test an application, the

resources that will be used, the test environment in which testing will be
performed, the limitations of the testing and the schedule of testing activities.

• Typically the Quality Assurance Team Lead will be responsible for writing a Test
Plan.

• A Test Plan will include the following:
o Introduction to the Test Plan document
o Assumptions when testing the application
o List of test cases included in Testing the application
o List of features to be tested
o What sort of Approach to use when testing the software
o List of Deliverables that need to be tested
o The resources allocated for testing the application
o Any Risks involved during the testing process
o A Schedule of tasks and milestones as testing is started

Reference: Software Testing Tutorial, tutorialspoint.com

See PDF document on Course schedule

How to Create a Test Plan
http://www.guru99.com/what-everybody-ought-to-know-about-test-planing.html

Test Plan Template:
http://download.guru99.com/random_download/download_file.php?file=guru99/TestPlan.doc

Test Plan Example:
http://download.guru99.com/random_download/download_file.php?file=guru99/Test_Plan_Guru99.pdf

Example #3

http://www.guru99.com/what-everybody-ought-to-know-about-test-planing.html

46E. J. Braude and M. E.Bernstein, Software Engineering: Modern Approaches, 2 ed.: Wiley, 2011. (Ch. 25)

Another Test Plan Example
Example #4

Test Plan Example
Example #5

Software Engineering (Saikat Dutt, et al.)

• 3. Test Strategy
• 3.1 Features to be tested
• 3.2 Types of testing
• 3.3 Testing Approach

• 4. Release
• 4.1 Activity Guidelines
• 4.2 Defect Tracker Setup
• 4.3 Test case pass/fail criteria
• 4.4 Test suspension criteria
• 4.5 Test resumption requirements
• 4.6 UAT Release criteria

• 5. Critical Dates

• 1. Sample Test Plan Structure: Introduction
• 1.1 Background
• 1.2 References
• 1.3 Development Methodology
• 1.4 Change Control Procedure
• 1.5 Test Assumptions

• 2. Scope
• 2.1 Technical Overview of the Application
• 2.2 Technical components or architecture diagram
• 2.3 Business Overview of the application
• 2.4 Business or Data Model Diagram
• 2.5 External Interfaces
• 2.6 Testability
• 2.7 Out of Scope

Typical Software Documentation

High-Level
Requirements and
Design Documents

User Manuals

System
Documentation

Installation Guides

Test Plans

Test Documentation

Detailed
Requirements and
Design Documents

ER Diagram (Database)
UML Diagrams (Code)

Ti
m

e
Start

Finish

How to Test/
What to Test

CAD Drawings, etc.

1. Planning

2. Testing

3. End-user
Documentation
(The people that
shall actually use
the software)

Technical Stuff

How to use it

How to install it

Proof that you have tested and that the
software works as expected

(The stakeholders, the
software team; architects,
UX designers, developers)

(QA people)

(Super User/ IT dep.)

WHAT
HOW

(End User)Pr
oj

ec
t M

an
ag

em
en

t (
Ga

nt
t C

ha
rt

, e
tc

.)

(SRS)
(SDD)

(STP)
(STD)

Software
Development Plan (SDP)

2.Requierements
/Design

Test Documentation

Planning Tests Perform Tests Document
Test Results

Software Test Plan (STP)

Software Requirements Specifications (SRS)
Software Design Document (SDD)

Software Test
Documentation

(STD)

Test Logs

These documents will be the foundation for all Testing

- Functional & Non-Functional Requirements
- User & System Requirements

Hans-Petter Halvorsen

https://www.halvorsen.blog

Test Environment

Table of Contents

See Next Slides for more details...

Test Environment
• Prepare a Virtual Test Environment using

VMware Workstation Player (Virtual Machine, VM)

• Install Windows (from Microsoft Imagine)
• Install SQL Server
• Install your Software on the Virtual Machine
• Make it ready for Testing

Note! Make sure you have enough
free space on your harddrive!

Note! Everyone on the Team
should do this Exercise

q Install VMware Workstation Player
q Install Windows 10 (from .iso file, ~3Gb)
q Install VMware Tools in the VM
q Install SQL Server in the VM
q Activate Web Server – Internet Information Services (IIS) and ASP.NET
q Backup (Make a copy of the Folder) the Virtual Machine (VM). In that way

you have a clean Test Environment you can use several times.
q Install your Software in the VM and make it ready for Testing

q Create/Install your Database from a SQL Script (You should have one SQL
Script that installs everything, such as Tables, Views, Stored Procedures, etc.)

q Install Desktop App (if any), i.e., copy .exe file, etc.
q Install Web App, copy files (web files, dll and other necessary files) and

deploy to Web Server (IIS)
q Make a Copy of your VM (Memory Stick/Hard Drive)

Note! Visual Studio shall
not be installed in the Test

Environment

You need +20Gb free
space on your hard drive

Create Virtual Test Environment
Name:_______________

The first student submitting this form will receive a prize!

Why Test Environment?
• “It works on my PC” says the Developer
• Clean Environment
• On the Developers PCs we have all kind of Software installed that

the Customer don't have, e.g., Development Tools like Visual
Studio, etc.

• We need to test on different Platforms and Operating Systems
• Customers may use different Web Browsers
• Deployment: Test of Installation packages
• Make the software available for Testers
• etc.

“It works on my Computer”
Make sure to test your software on
other Computers and Environments
than your Development Computer!
• Everything works on the Developer

Computer
• The Customers Database is not the

same as yours
• The Customer may not use the

same OS
• The Customer may not use the

same Web Browser
• The Customer do not have Visual

Studio, SQL Server, etc. on their
Personal Computer

• Etc.
=> Test Environment is needed!

Development Testing Production

Development
Environment Test Environment

Production
Environment

Typically the Developers Personal
Computer with Database, Web
Server and Programming Software

A Clean PC/Server (or a network
with PCs and Servers) where you
install and test your Software.
Today we typically set-up a Virtual
Test Environment

The Customers environment
where you install the final
software (Servers and
Clients)

Programming environments such as Visual
Studio, etc. should not be installed in this
environment. You need to create .exe files
etc. in order to make your software run.

Developers Developers & Testers Customers
until finished

Virtualization

Operation System

Virtualization
Software

Hypervisor

VM VM VM

Hardware
(Computer)

VM VM VM

Guests

Host

VM = Virtual Machines

A Hypervisor can
run directly on the
computer without
a Host OS

Windows, Linux, ...

Windows, Linux, ...

Virtualization Software
A lot of Virtualization Software exists. Here are some examples:
• VMware Workstation
• VMware Workstation Player (Free of charge and simple to

use)
• VMware vSphere and vSphere HyperVisor
• VMware Fusion (Mac)
• Parallels Desktop (Mac)
• Microsoft Hyper-V (part of Windows)
• VirtualBox
• etc.

VMware Workstation Player
VMware Workstation Player is for personal use on
your own PC. VMware Player is free of charge for
personal non commercial use.

61

VMware is a company that has
been specializing within
virtualization software.
http://www.vmware.com

http://www.vmware.com

Test Environment - Summary
• It is important to test your software outside the

Development Environment
• To make the software available for test personnel

(nonprogrammers), the company leaders, customers,
those who are creating user documentation, sales
department, etc. None of these have programming experience
or have Visual Studio, etc. installed

• It is important that the Customers, Testers, etc. have
access to and can test the software in good time before
release and deployment to Production Environment

“If your code works, but you don’t know why
– Then it does not work, you just don’t know
it yet”

http://geek-and-poke.com

http://geek-and-poke.com/

• Remember – It is your Customers that are
going to use your Software (and pay for it)!
• The Customer needs to be involved in the

Requirements, User Experience and Testing
of the Software!
• If the Customer cannot use the software,

then the software becomes worthless

Customer Perspective

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

